Abstract

AbstractThis article describes the research work relating to the assessment and control of human-induced vibration of an unusual curved cable-stayed bridge with separate road and pedestrian decks. Dynamic simulations of human-induced vibration were performed with a mode-by-mode approach, and the results showed that a total of eight lateral and vertical modes of the bridge may suffer from excessive vibrations at the design crowd density. A hybrid control scheme was developed for control of human-induced vibration, which consists of steel braces fitted between the road bridge deck and the pedestrian deck to improve structural stiffness and eddy current tuned mass dampers to enhance damping ratios of lively modes. The modal properties of the bridge with steel braces were experimentally obtained by dynamic tests and used for parameter tuning of mass dampers. The performance of the hybrid control strategy was evaluated by group tests of up to 400 pedestrians. It is shown that the critical number of pedestrians...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call