Abstract
In Part I it was shown that conventional control of household refrigerators is achieved by regulating the distribution of air in the freezer compartment to all other parts of the plant. In Part II three alternative approaches to the conventional control of a top-mount refrigerator are presented: variable temperature bandwidths, uncoupled compressor and evaporator fan, and the combination of these two. These allowed the plant to achieve near-ideal control with respect to improved temperature performance in each compartment. Automatic airflow dampers were used with the dual controllers to independently regulate refrigerator compartment temperature. Plant performance was simulated using a model that computes the refrigerant and airflow systems behavior. Together, these alternate configurations and approaches define new control algorithms that reveal the plant's optimal control model for improving performance and energy usage relative to conventional controllers. Results based on model simulations are dependent upon the model's accuracy and validity. However, the model validation studies cited here, though limited in scope, do show agreement between simulation and experimental data for the ambient temperatures and thermal load conditions considered. This suggests that these model results are reasonable, and representative of actual plant behavior under these conditions and configurations for a top-mount style refrigerator plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.