Abstract

Mixing a sterically bulky, electron-transporting host material into a conventional single host-guest emissive layer isdemonstratedtosuppress phase separation of the host matrix while increasing the efficiency and operational lifetime of deep-blue phosphorescent organic light-emitting diodes (PHOLEDs) with chromaticity coordinates of (0.14, 0.15). The bulky host enables homogenous mixing of the molecules comprising the emissive layer while suppressing single host aggregation; a significant loss channel of nonradiative recombination. By controlling the amorphous phase of the host-matrix morphology, the mixed-host device achieves a significant reduction in nonradiative exciton decay, resulting in 120 ± 6% increase in external quantum efficiency relative to an analogous, single-host device. In contrast to single host PHOLEDs where electrons are transported by the host and holes by the dopants, both charge carriers are conducted by the mixed host, reducing the probability of exciton annihilation, thereby doubling of the deep-blue PHOLED operational lifetime. These findings demonstrate that the host matrix morphology affects almost every aspect of PHOLED performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.