Abstract

Motor neurons are a widely studied model of vertebrate neurogenesis. They can be subdivided in somatic, branchial and visceral motor neurons. Recent studies on the dorsoventral patterning of the rhombencephalon have implicated the homeobox genes Pax6 and Nkx2.2 in the early divergence of the transcriptional programme of hindbrain somatic and visceral motor neuronal differentiation. We provide genetic evidence that the paired-like homeodomain protein Phox2b is required for the formation of all branchial and visceral, but not somatic, motor neurons in the hindbrain. In mice lacking Phox2b, both the generic and subtype-specific programs of motoneuronal differentiation are disrupted at an early stage. Most motor neuron precursors die inside the neuroepithelium while those that emigrate to the mantle layer fail to switch on early postmitotic markers and to downregulate neuroepithelial markers. Thus, the loss of function of Phox2b in hindbrain motor neurons exemplifies a novel control point in the generation of CNS neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call