Abstract
The evolution of grain boundary microstructures in gold thin films during annealing was investigated in order to find a clue to the development of high performance thin films by grain boundary engineering. The {111} oriented grains with the lowest surface energy were preferentially grown by surface energy-driven grain growth during annealing. The sharp {111} texture was developed by annealing at the temperature more than 873K. The remarkably high fraction of low-Σ coincidence site lattice (CSL) boundaries occurred when the area fraction of {111} texture increased to more than 95%. In particular, the fraction of some low-Σ CSL boundaries (Σ1,Σ3,Σ7) for the most sharply {111} textured specimen was found to be one order higher than those predicted for a random polycrystal. The utility of grain boundary engineering is discussed for controlling the performance degradation caused by the percolation phenomena of grain boundary diffusion in gold thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.