Abstract

Supervision of distributed manufacturing processes producing different grades of a product requires intelligent reconfiguration strategies during grade transition phases to minimize off-spec production. Agent-based approaches are ideal for such problems and they provide flexible, robust, and emergent solutions during dynamically changing process conditions. Three different multi-layered, multi-agent frameworks are proposed for the supervision of grade transitions in autocatalytic reactor networks. The first framework is the centralized framework and it is useful for small-scale grade transitions where only a small region of the network needs to be reconfigured. Alternatively, the other two frameworks use a decentralized approach. The first decentralized framework implements genetic algorithms and the second one uses self-organizing heuristics and auctions for large-scale grade transitions. The case studies demonstrate that as the complexity of the reconfiguration problem increases, decentralized solutions perform more efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.