Abstract
The actions of the heptadecapeptide termed nociceptin or orphanin FQ (N/OFQ) and the recently discovered putative precursor product nocistatin were examined on synaptic transmission in putative projection cells of the rat lateral amygdala using the whole-cell patch-clamp technique. N/OFQ decreased evoked non-NMDA receptor-mediated excitatory postsynaptic current (EPSC) amplitudes in a concentration-dependent manner, with a half-maximal inhibitory effect elicited by 21.8 +/- 7.5 nM and a Hill coefficient of 0.8 +/- 0.2 (n = 22). Responses were maximally suppressed to 70.3 +/- 1.7 % of the control value. The effect of N/OFQ was prevented by 1 microM [Phe1[psi](CH2-NH)Gly2]NC(1-13)NH2 (Phe[psi]N/OFQ), a substance known as an antagonist/partial agonist of the ORL receptor. GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) elicited through intra-amygdaloid stimulation were reduced to 48.0 +/- 6.8 % by 1 microM N/OFQ (n = 5). Nocistatin had no measurable effect on evoked synaptic currents or membrane properties of recorded neurons. N/OFQ reduced the frequency of spontaneous miniature EPSCs and IPSCs to 74.0 +/- 2.6 % and 84.4 +/- 1.1 %, respectively, without affecting the amplitudes. The present findings indicate that N/OFQ, but not nocistatin, inhibits the release of glutamate and GABA in the lateral amygdala, presumably by acting on presynaptic release sites. These mechanisms may add to the role of N/OFQ in reducing stress vulnerability as recently proposed on the basis of behavioural and genetic approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.