Abstract
The development of glial precursor cells in the mammalian optic nerve depends on retinal ganglion cell (RGC) axons, but the signals that mediate this neuron-to-glia interaction have not been fully characterized. Sonic hedgehog (Shh) is expressed by RGCs, and we showed previously that it is required for the specification of astrocyte lineage cells at the optic disc. To study the role of RGC-derived Shh on astrocyte development at later developmental stages, we generated mice with a conditional ablation of Shh in the peripheral retina and analyzed gene expression and glial cell development in the optic nerve. Astrocyte development was initiated in the optic nerves of these mutant mice; however, the expression of Hedgehog (Hh) target genes, Gli1 and Ptch1 and cell cycle genes, Ccnd1 and Cdc25b in the optic nerves were downregulated. Astrocyte proliferation was markedly reduced. Oligodendrocyte precursor cells were fewer in the optic nerves of mutant mice, possibly as a consequence of reduced secretion of growth factors by astrocytes. At a later developmental stage, optic nerve axons displayed signs of Wallerian degeneration, including reduction of astrocyte processes, degenerating glial cells and formation of distended axons. We also demonstrate that the Hh pathway can be activated in optic nerve-derived astrocytes in vitro, but fails to induce cell cycle gene expression and proliferation. RGC-derived Shh signalling isthus necessary in vivo for maintenance of astrocyte proliferation, affecting both axo-glial and normal glial cell development in the optic nerve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.