Abstract

Exploring adult stem cell dynamics in normal and disease states is crucial to both better understanding their in vivo role and better realizing their therapeutic potential. Here we address the division frequency of Germline Stem Cells (GSCs) in testes of Drosophila melanogaster. We show that GSC division frequency is under genetic control of the highly conserved Epidermal Growth Factor (EGF) signaling pathway. When EGF signaling was attenuated, we detected a two-fold increase in the percentage of GSCs in mitotic division compared to GSCs in control animals. Ex vivo and in vivo experiments using a marker for cells in S-phase of the cell cycle showed that the GSCs in EGF mutant testes divide faster than GSCs in control testes. The increased mitotic activity of GSCs in EGF mutants was rescued by restoring EGF signaling in the GSCs, and reproduced in testes from animals with soma-depleted EGF-Receptor (EGFR). Interestingly, EGF attenuation specifically increased the GSC division frequency in adult testes, but not in larval testes. Furthermore, GSCs in testes with tumors resulting from the perturbation of other conserved signaling pathways divided at normal frequencies. We conclude that EGF signaling from the GSCs to the CySCs normally regulates GSC division frequency. The EGF signaling pathway is bifurcated and acts differently in adult compared to larval testes. In addition, regulation of GSC division frequency is a specific role for EGF signaling as it is not affected in all tumor models. These data advance our understanding concerning stem cell dynamics in normal tissues and in a tumor model.

Highlights

  • Adult stem cells self-renew and give rise to differentiating daughters that maintain specific tissues throughout the life of an individual

  • Less is known about how the mitotic activity of stem cells is regulated in vivo. This understudied aspect of stem cell biology is crucial because small changes in the frequency of stem cell divisions can dramatically alter the number of terminally differentiated cells

  • Epidermal Growth Factor (EGF) Regulates the Length of the Germline Stem Cells (GSCs) Cell Cycle To address the in vivo division dynamics of stem cells, we quantified the percentage of GSCs in mitosis (M-phase index)

Read more

Summary

Introduction

Adult stem cells self-renew and give rise to differentiating daughters that maintain specific tissues throughout the life of an individual. Mutations in stet as well as RNAi-mediated knockdown of the EGFR in cyst cells recapitulated the increased mitotic activity of GSCs. These data demonstrate a novel and specific role for EGF signaling: the repression of GSC division frequency.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call