Abstract
A great deal is known about the genetic relationships between biomarkers and their biogenic precursors in organic rich rocks. The same is true of the way in which biomarker compound ratios change during maturation. On the other hand, very little is known about whether a crude oil can fully retain its inherent compositional ancestry during expulsion from a source rock. Thanks to shales being characterized in great detail for their unconventional resource potential, new information is gradually coming to light. Here we report on observations in biomarker geochemistry of a thermally mature core of the Barnett Shale, in which organofacies and maturity are essentially the same, but where intraformational sources and reservoirs have already been reported.Our results indicate that most biomarkers are not fractionated as the primary migration of petroleum within source rocks takes place. The 20S/(20S + 20R) ratio of C27 steranes is uniform in the whole source-rock sequence, while the 20S/(20S + 20R) ratio of C29 steranes shows indistinctly high values in the reservoir unit. The 20S/(20S + 20R) ratio of diasteranes and the 22S/(22S + 22R) ratio of C31 17α-hopanes do not appear to have been fractionated, which may be a result of the thermal isomerization reactions predominating over and masking out the possible fractionation effects. Diasteranes/steranes ratios do not exhibit features that suggest an association with fractionation, but rather are broadly correlated with lithology. However, compared to the diasteranes/steranes ratios, the Ts/(Ts + Tm) ratio is much more sensitive to changes in mineral compositions. Variations in the Ts/(Ts + Tm) ratio show a positive correlation (R2 = 0.73) with mixed-layer illite-smectite content. Fractionation in the Ts/(Ts + Tm) ratio, if it has so occurred, may be subsequently overprinted by in-situ clay-catalyzed reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.