Abstract

Extensive extracellular matrix remodelling occurs within the lifespan of the corpus luteum, particularly during corpus luteum formation and regression. A major mechanism for the regulation of extracellular matrix remodelling is via local production of specific proteinase inhibitors, such as the serine proteinase inhibitor plasminogen activator inhibitor type-1 (PAI-1). The objective of the present study was to characterize the localization, ontogeny and regulation of PAI-1 expression within ovine corpora lutea. Urokinase binding activity was detected within medium conditioned by ovine luteal cells. Production of PAI-1 by ovine luteal cells was confirmed by immunoprecipitating it from labelled proteins in culture medium. mRNA encoding PAI-1 was present within developing (day 3), mature (day 10) and regressing (30 h after prostaglandin F2 alpha injection on day 10 after the onset of oestrus) corpora lutea as demonstrated by in situ hybridization. The ontogeny of PAI-1 mRNA expression was characterized within corpora lutea collected on days 3, 7, 10, 13 and 16 after the onset of oestrus (n = 4, 4, 4, 3 and 4, respectively). Expression of PAI-1 mRNA did not differ during the luteal phase (P = 0.06), although a trend for an increase in the amount of PAI-1 mRNA was observed on day 16. Expression of PAI-1 mRNA was also examined during luteal regression in corpora lutea collected 0, 6, 12, 24 and 36 h after injection of prostaglandin F2 alpha on day 10 after the onset of oestrus (n = 4 at each time). Relative PAI-1 mRNA concentrations changed significantly during luteolysis induced by prostaglandin F2 alpha (P = 0.0002). Administration of prostaglandin F2 alpha resulted in a transient sevenfold increase in PAI-1 mRNA 6 h after injection (P = 0.0001) but by 12 h the amounts had returned to values similar to those detected on day 10. We conclude that PAI-1 is a major secretory product of ovine luteal cells and that a transient increase in PAI-1 mRNA occurs during luteolysis induced by prostaglandin F2 alpha. PAI-1 probably plays a key local role in the control of extracellular proteolysis during the luteal phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call