Abstract

The inherent potential of reaction flash-sintering for the preparation of complex oxides is evidenced by the one-step synthesis and densification of a ceramic of complex stoichiometry. The system Bi0.93La0.07FeO3, a multiferroic ceramic with promising technological applications, has been chosen. This system presents three different metals in its composition and it is extremely challenging to prepare by conventional procedures. Non-stoichiometric materials with unwilling secondary phases are usually obtained by conventional methods, due to the high volatility of bismuth oxide at the temperatures required for inducing the solid-solid reactions. Here, it is demonstrated that a careful control of the experimental flash conditions (applied electric field and selected current density limit) is required to obtain a high quality ceramic. Small deviations from the optimum conditions result in either non-stoichometric or poorly densified samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.