Abstract
A novel approach to the control of enzyme catalysis is presented in which a disulfide bond engineered into the active-site cleft of bacteriophage T4 lysozyme is capable of switching the activity on and off. Two cysteines (Thr21----Cys and Thr142----Cys) were introduced by oligonucleotide-directed mutagenesis into the active-site cleft. These cysteines spontaneously formed a disulfide bond under oxidative conditions in vitro, and the catalytic activity of the oxidized (cross-linked) T4 lysozyme was completely lost. On exposure to reducing agent, however, the disulfide bond was rapidly broken, and the reduced (non-cross-linked) lysozyme was restored to full activity. Thus an enzyme has been engineered such that redox potential can be used to control catalytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.