Abstract

We study the electrostatic coupling in the silicon double quantum dot (DQD) structure as a key building block for a charge-based quantum computer and a quantum cellular automaton (QCA). We realize the three interdot coupling regimes of the DQD structure only by optimizing the DQD design and the thermal oxidation condition. We then demonstrate that the electrostatic coupling between DQDs can be modulated by tuning the negative voltage of the side gate electrode. Note that the interdot coupling was largely modulated with a small decrease in the gate voltage from 0 to -100 mV because our structure initially has the DQD geometry. Furthermore, the device fabrication is compatible with the conventional silicon complementary metal–oxide–semiconductor (CMOS) process. This structure is suitable for the future integration of CMOS devices. In addition, we show the derivation of the DQDs' capacitances, including the gate cross capacitances, as a function of the spacing between the two adjacent charge triple points. By using these capacitances, the electron transport properties of the DQD structure are simulated, and the modulation of the electrostatic coupling is successfully simulated as the change of the total capacitance in DQDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call