Abstract

Two segments of plasmas with different densities, which are operated as the electron injector and accelerator, respectively, are designed to realize a cascaded laser wakefield accelerator. Particle-in-cell simulations indicate that the further acceleration of the electrons in the second uniform-density plasma relies on the injection and acceleration in the first stage. It is found that electrons trapped in the second wakefield period in the first stage can be seeded into the next stage with an optimized phase for efficient acceleration and reducing in the relative energy spread. And finally a 700 MeV electron beam with a relative rms energy spread about 0.6% and the normalized transverse emittance of 1.4π mm mrad was obtained after a 5.5-mm-long acceleration in a dark-current free cascaded laser wakefield accelerator. Our results demonstrate that, for a given laser energy, choices in laser and plasma parameters strongly affect the output electron beam energy and quality, and that all of these parameters can be controlled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.