Abstract
We consider the dynamics of electrons and holes moving in two-dimensional lattice layers and bilayers. As an example, we study triangular lattices with units interacting via anharmonic Morse potentials and investigate the dynamics of excess electrons and electron-hole pairs according to the Schrödinger equation in the tight binding approximation. We show that when single-site lattice solitons or M-solitons are excited in one of the layers, those lattice deformations are capable of trapping excess electrons or electron-hole pairs, thus forming quasiparticle compounds moving approximately with the velocity of the solitons. We study the temporal and spatial nonlinear dynamical evolution of localized excitations on coupled triangular double layers. Furthermore, we find that the motion of electrons or electron-hole pairs on a bilayer is slaved by solitons. By case studies of the dynamics of charges bound to solitons, we demonstrate that the slaving effect may be exploited for controlling the motion of the electrons and holes in lattice layers, including also bosonic electron-hole-soliton compounds in lattice bilayers, which represent a novel form of quasiparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.