Abstract

In this paper we present a controller synthesis approach for elastic systems based on the mathematical concept of passivity. For nonlinear and linear elastic systems that are inherently passive, robust control laws are presented that guarantee stability. Examples of such systems include flexible structures with col-located and compatible actuators and sensors, and multibody space-based robotic manipulators. For linear elastic systems that are not inherently passive, methods are presented for rendering them passive by compensation. The “passified” systems can then be robustly controlled by a class of passive linear controllers that guarantee stability despite uncertainties and inaccuracies in the mathematical models. The controller synthesis approach is demonstrated by application to five different types of elastic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.