Abstract

We prove a microlocal lower bound on the mass of high energy eigenfunctions of the Laplacian on compact surfaces of negative curvature, and more generally on surfaces with Anosov geodesic flows. This implies controllability for the Schrödinger equation by any nonempty open set, and shows that every semiclassical measure has full support. We also prove exponential energy decay for solutions to the damped wave equation on such surfaces, for any nontrivial damping coefficient. These results extend previous works (see Semyon Dyatlov and Long Jin [Acta Math. 220 (2018), pp. 297–339] and Long Jin [Comm. Math. Phys. 373 (2020), pp. 771–794]), which considered the setting of surfaces of constant negative curvature. The proofs use the strategy of Semyon Dyatlov and Long Jin [Acta Math. 220 (2018), pp. 297–339 and Long Jin [Comm. Math. Phys. 373 (2020), pp. 771–794] and rely on the fractal uncertainty principle of Jean Bourgain and Semyon Dyatlov [Ann. of Math. (2) 187 (2018), pp. 825–867]. However, in the variable curvature case the stable/unstable foliations are not smooth, so we can no longer associate to these foliations a pseudodifferential calculus of the type used by Semyon Dyatlov and Joshua Zahl [Geom. Funct. Anal. 26 (2016), pp. 1011–1094]. Instead, our argument uses Egorov’s theorem up to local Ehrenfest time and the hyperbolic parametrix of Stéphane Nonnenmacher and Maciej Zworski [Acta Math. 203 (2009), pp. 149–233], together with the C 1 + C^{1+} regularity of the stable/unstable foliations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.