Abstract

Principles of moving mass control of the orbital parameters of an artificial dumbbell shaped satellite are discussed in the present paper. The rationale is to implement a non-jet principle of actuation by varying the geometry of the satellite through its internal degrees-of-freedom. This can be achieved by spinning the massive parts of the dumbbell and changing their relative distance upon the orbital angle according to the suggested control strategies. The control schemes aim at maintaining a desired satellite size and orientation with respect to the orbital radius in order to take advantage of the variations in the gravitational field along the elliptical orbit. The results demonstrate that the total orbital energy can follow a prescribed temporal profile by controlling the satellite orientation on the orbit to accurately track its desired target. Analytical estimates for the satellite’s energy versus the number of orbital cycles are determined from closed-form solutions. Results from both analytical estimates and numerical integration are in sufficient agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.