Abstract

Under unbalanced grid condition, in a doubly-fed induction generator (DFIG), voltage, current, and flux of the stator become asymmetric. Therefore, active-reactive power and torque will be oscillating. In DFIG controlling rotor side converter (RSC) aims to eliminate power and torque oscillations. However, simultaneous elimination of the power and torque oscillations is not possible. Also, grid side converter (GSC) aims to regulate DC-Link voltage. In this paper, in order to regulate DC-Link voltage, an extended state observer (ESO) based on a generalized proportional-integral (GPI) controller, is employed. In this controlling method, DC-Link voltage is controlled without measuring the GSC current, and due to using the GPI controller, the improved dynamic response is resistant against voltage changes, and the settling time is reduced. A versatile rotor position computation algorithm (RPCA) is utilized to measure the rotor speed. This algorithm is simple, yet it is accurate and is resistant to changes in the resistance of the rotor and stator. The simulations are implemented by MATLAB software in the synchronous positive and negative sequence reference (d-q).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call