Abstract
Duplication of the Escherichia coli bacterial cell culminates in the formation of a division septum that splits the progenitor cell into two identical daughter cells. Invagination of the cell envelope is brought about by the co-ordinated interplay of a family of septation-specific proteins that act locally at mid-cell at a specific time in the cell cycle. The majority of the genes known to be required for septum formation are found within the large mra cluster located at 2 min on the E. coli genetic map (nucleotides 89 552–107 474). Examination of the controls exerted on the mra operon shows that E. coli uses an extraordinary range of strategies to co-ordinate the expression of the cell division genes with respect to each other and to the cell cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.