Abstract

Despite the fact that Bacillus thuringiensis (Bt) is found in more than 90% of the products used against insects, it has some difficulty reaching the internal regions where the larvae feed. To solve this problem, many genetically modified microorganisms that colonize the same pests have been developed. Thus, the endophytic bacterium Pantoea agglomerans (33.1), which has been recently described as a promising sugarcane growth promoter, was genetically modified with the pJTT vector (which carries the gene cry1Ac7) to control the sugarcane borer, Diatraea saccharalis. Firstly, the bioassays for D. saccharalis control by 33.1:pJTT were conducted with an artificial diet. A new in vivo methodology was also developed, which confirmed the partial control of larvae by 33.1:pJTT. The 33.1:pJTT strain was inoculated into sugarcane stalks containing the D. saccharalis larvae. In the sugarcane stalks, 33.1:pJTT was able to increase the mortality of D. saccharalis larvae, impair larval development and decrease larval weight. Sugarcane seedlings were inoculated with 33.1:pJTT, and re-isolation confirmed the capacity of 33.1:pJTT to continuously colonize the sugarcane. These results prove that P. agglomerans (33.1), a sugarcane growth promoter, can be improved by expressing the Cry protein, and the resulting strain is able to control the sugarcane borer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.