Abstract

1. The synthesis of β-galactosidase in a constitutive mutant ofEscherichia coli (ML 308, i-z+y+a+) responds to the nutritional environment. Repression can be reversed by cyclic AMP. 2. The greatest degree (%) of repression by metabolisable compounds is obtained when cells utilising glycerol (0%) are given, in addition, pyruvate (67%), serine (57%) which can be converted to pyruvate, or substrates of phosphotransferase systems (20–40%) which liberate pyruvate in their operation. Furthermore, pyruvate represses β-galactosidase synthesis in a phosphoenolpyruvate synthaseless mutant. Pyruvate, however, does not repress in a pyruvate dehydrogenaseless mutant and it follows that pyruvate itself is not the agent of repression. 3. Raffinose, a non-metabolisable galactoside, represses synthesis of β-galactosidase during growth on glycerol. Over a wide range, repression depends on raffinose concentration as does a lowered pool of ATP, rate of oxygen consumption and growth rate. All these parameters are inter-related but, in particular, β-galactosidase synthesis depends on the size of the ATP-pool presumably because this also limits synthesis of cyclic AMP under these conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call