Abstract
Stabilization of an Euler-Lagrange system onto a constraint surface when the system makes contact with a nonzero impact velocity is an important problem in systems interacting with external environments. Potential applications include robotic surface following and surface finishing operations in manufacturing industry. In the paper, the constrained dynamic equations are modeled as a set of nonsmooth differential equations depending on whether the system lies on the constraint surface or the system repeatedly makes and loses contact with the constraint surface. The focus is on the initial condition problem, i.e., the system hits the constraint with a nonzero impact velocity. A new discontinuous control scheme is proposed that ensures stable regulation of the system onto the constraint surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.