Abstract

The heterogeneity of lithofacies is a pivotal factor influencing the shale oil potential. A comprehensive understanding of the intricate influence of rock complexity on hydrocarbon generation properties, microscopic pore-throat structure, and fluid occurrences is crucial for shale oil exploration and development. The Lucaogou Formation in the Jimsar Sag is a type of saline lacustrine shale oil, which was chosen as a research example in this paper. To unravel the causal linkage and confirm the coupling relationship between lithofacies, pores, and fluid mobility in the sedimentary sequence of saline lacustrine basins, a series of experiments were conducted. These included total organic carbon (TOC), X-ray diffraction (XRD), vitrinite reflectance (Ro), Rock-Eval pyrolysis, field emission-scanning electron microscopy (FE-SEM), low-field nuclear magnetic resonance (LF-NMR), mercury intrusion porosimetry (MIP), and low-temperature nitrogen adsorption (LTN2A). The results revealed significant differences in pores, oiliness, and fluid mobility among the four dominant lithofacies. Employing an innovative comprehensive evaluation method, high-carbon silty dolomite manifests significant potential for hydrocarbon generation, substantial storage capacity, effective oiliness and mobility, heightened brittle mineral content, and facile fracture production. Consequently, it was the most favorable lithofacies. Furthermore, TOC, pore size, and pore types emerged as key factors influencing the movable oil content of different lithofacies. More importantly, a detailed multiscale model illustrated potential linkages across the three different scales of lithofacies associations, pores, and fluid mobility. The study’s outcomes can offer enhanced guidance for accurately assessing shale oil resources, particularly in the identification of crucial “sweet spots”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call