Abstract
Knowledge about factors that govern chemoselectivity is pivotal to the design of reactions that are utilized to produce complex organic substances. In the current study, single-electron transfer (SET)-promoted photoaddition reactions of fullerene C60 with both trimethylsilyl and various alkyl group-containing glycinates and ethyl N-alkyl-N-((trimethylsilyl)methyl)glycinates were explored to evaluate how the nature of N-alkyl substituents of glycinate substrates and reaction conditions govern the chemoselectivity of reaction pathways followed. The results showed that photoreactions of C60 with glycinates, performed in deoxygenated conditions, produced aminomethyl-1,2-dihydrofullerenes efficiently through a pathway involving the addition of α-amino radical intermediates that are generated by sequential SET-solvent-assisted desilylation of glycinate substrates to C60. Under oxygenated conditions, photoreactions of glycinate substrates, except N-benzyl-substituted analogues, did not take place efficiently owing to quenching of 3C60* by oxygen. Interestingly, N-benzyl-substituted glycinates did react under these conditions to form fulleropyrrolidines through a pathway involving 1,3-dipolar cycloaddition of in situ formed azomethine ylides to C60. The ylide intermediates were formed by regioselective H-atom transfer from glycinates by singlet oxygen. Furthermore, methylene blue (MB)-photosensitized reactions of C60 with glycinates under oxygenated conditions took place efficiently to produce fulleropyrrolidines independent of the nature of N-alkyl substituents of glycinates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.