Abstract

High-speed milling operations are often limited by regenerative vibrations. The aim of this paper is to analyze the effect of spindle speed variation on machine tool chatter in high-speed milling. The stability analysis of triangular and sinusoidal shape variations is made numerically with the semi-discretization method. Parametric studies show also the influence of the frequency and amplitude variation parameters. This modeling is validated experimentally by variable spindle speed cutting tests with a triangular shape. Stable and unstable tests are analyzed in term of amplitude vibration and surface roughness degradation. This work reveals that stability must be considered at period variation scale. It is also shown that spindle speed variation can be efficiently used to suppress chatter in the flip lobe area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.