Abstract
The electronic and spin states of a series of Co-Fe Prussian blue analogues containing Na(+) ion in the lattice, Na(x)()Co(y)()Fe(CN)(6) x zH(2)O, strongly depended on the atomic composition ratio of Co to Fe (Co/Fe) and temperature. Compounds of Co/Fe = 1.5 and 1.15 consisted mostly of the Fe(III)(t(2g)(5)e(g)(0), LS, S = 1/2)-CN-Co(II)(t(2g)(5)e(g)(2), HS, S = 3/2) site and the Fe(II)(t(2g)(6)e(g)(0), LS, S = 0)-CN-Co(III)(t(2g)(6)e(g)(0), LS, S = 0) site, respectively, over the entire temperature region from 5 to 350 K. Conversely, compounds of Co/Fe = 1.37, 1.32, and 1.26 showed a change in their electronic and spin states depending on the temperature. These compounds consisted mainly of the Fe(III)-CN-Co(II) site (HT phase) around room temperature but turned to the state consisting mainly of the Fe(II)-CN-Co(III) site (LT phase) at low temperatures. This charge-transfer-induced spin transition (CTIST) phenomenon occurred reversibly with a large thermal hysteresis of about 40 K. The CTIST temperature (T(1/2) = (T(1/2) descending + T(1/2) ascending)/2) increased from 200 to 280 K with decreasing Co/Fe from 1.37 to 1.26. Furthermore, by light illumination at 5 K, the LT phase of compounds of Co/Fe = 1.37, 1.32, and 1.26 was converted to the HT phase, and the relaxation temperature from this photoproduced HT phase also strongly depended on the Co/Fe ratio; 145 K for Co/Fe = 1.37, 125 K for Co/Fe = 1.32, and 110 K for Co/Fe = 1.26. All these phenomena are explained by a simple model using potential energy curves of the LT and HT phases. The energy difference of two phases is determined by the ligand field strength around Co(II) ions, which can be controlled by Co/Fe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.