Abstract
Experiments on a transparent, constant-gain-controlled amplifier ring network show that channel-power coupling can lead to instability in channel power control at add drop nodes. This instability can cause power oscillations due to competing adjustments on multiple nodes. Sequencing channel power tuning on each node is shown to result in stable power control. A distributed node scheduling algorithm that dynamically defines domains for independent node control is demonstrated through network simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.