Abstract
Chain walking and chain transfer are pivotal processes that govern the microstructure and molecular weight of polyolefins synthesized via late transition metal-catalyzed ethylene (co)polymerization. In this study, we demonstrate that tailored metal–π interactions using heteroatomic dibenzosuberyl substituents can effectively modulate both chain transfer and chain walking in α-diimine nickel- and palladium-catalyzed systems. This modulation leads to significant reductions in the molecular weight and branching density of the resulting polyethylenes and copolymers. To achieve this, we designed, synthesized, and characterized a series of α-diimine Ni(II) and Pd(II) complexes bearing diverse heteroatomic dibenzosuberyl substituents. In nickel-catalyzed ethylene polymerization, the heteroatomic dibenzosuberyl Ni(II) catalysts showed lower catalytic activities and produced polyethylenes with fewer branches (21–48/1000C vs 83–90/1000C) and an order of magnitude lower molecular weight (2.3–6.5 kg/mol vs 54.6–89.1 kg/mol) than the non-heteroatomic dibenzosuberyl Ni(II) catalyst. Comparable trends were observed in palladium-catalyzed ethylene polymerization and ethylene-MA copolymerization, with sulfur-containing substituents exerting more pronounced effects. We propose a mechanism where the weak metal–π interactions between the dibenzosuberyl substituents and the metal center during polymerization catalysis suppress β-H elimination and promote synergistic chain transfer. This provides a rationale for the observed reductions in molecular weight and branching density, offering valuable insights for the rational design of catalysts for tailored polyolefin synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.