Abstract

ABSTRACT In the red lobster (Palinurus vulgaris), an identified neurone, the anterior pyloric modulator neurone (APM), which has previously been shown to modulate the output of the pyloric central pattern generator, was shown to modulate the output of the gastric mill central pattern generator. APM activity induced a rhythm when the network was silent and increased rhythmic activity when the network was already active. Rhythmic activity was induced whether APM fired in single bursts, tonically or in repetitive bursts. A single burst in APM induced a rhythm which considerably outlasted the burst, whereas repetitive bursts effectively entrained the gastric oscillator. These modulations involved two major mechanisms. (1) APM induced or enhanced plateau properties in some of the gastric mill neurones. (2) APM activated the extrinsic inputs to the network, thus increasing the excitatory synaptic drive to most of the neurones of the network. As a result, when APM was active, all the neurones of the pattern generator actively participated in the rhythmic activity. By its actions on two separate but behaviourally related neural networks, the APM neurone may be able to control an entire concert of related types of behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.