Abstract

Current hyaluronic acid-based hydrogels often cause cytotoxicity to encapsulated cells and lack the adhesive property required for effective biomedical and tissue engineering applications. Provision of the cell-adhesive surface is an important requirement to improve its biocompatibility. An aqueous solution of hyaluronic acid possessing phenolic hydroxyl (HA-Ph) moieties is gellable via a horseradish peroxidase (HRP)-catalyzed oxidative cross-linking reaction. This study evaluates the effect of different degrees of cross-linked Ph moieties on cellular adhesiveness and proliferation on the resultant enzymatically cross-linked HA-Ph hydrogels. Mechanical characterization demonstrated that the compression force of engineered hydrogels could be tuned in the range of 0.05-35 N by changing conjugated Ph moieties in the precursor formulation. The water contact angle and water content show hydrophobicity of hydrogels increased with increasing content of cross-linked Ph groups. The seeded mouse embryo fibroblast-like cell line and human cervical cancer cell line, on the HA-Ph hydrogel, proved cell attachment and spreading with a high content of cross-linked Ph groups. The HA-Ph with a higher degree of Ph moieties shows the maximum degree of cell adhesion, spreading, and proliferation which presents this hydrogel as a suitable biomaterial for biomedical and tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call