Abstract

The main purpose of this paper is to design a decentralized controller for some car-like (wheeled) multi robots to follow and hunt a moving target. Considering geometric dimensions, mass and moment of inertia, robots are very similar to actual cars in which the outputs of the controller are steering and driving wheel torques. All robots are equipped with range and bearing sensors along with antenna, to communicate radio wave signals. A Kalman filter is implemented to estimate relative position, state variables of the target and state variables of other robots. The controller is designed to carry out the group maneuver of the system, based on the system dynamics analysis of inertial agents, as well as minimizing the norm of the error between desired and actual acceleration. A simulation study considering the group maneuver of four robots has been carried out, and the achieved results in positions, velocities and other relevant state variables of agents are depicted in the paper. The control torques of the steering system and driving wheels are derived and depicted appropriately. These results guarantee the performance of the addressed controller coupled with the Kalman filter, despite the existence of nonholonomics in dynamics, inertial behaviors, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.