Abstract

A model-based control scheme is designed to regulate the cylinder air charge of a camless multicylinder engine for unthrottled operation. The controller consists of a feedforward and an adaptive feedback scheme based on a control-oriented model of the breathing process of an engine equipped with electro-hydraulic springless valvetrain. The nonlinear control scheme is designed to achieve cylinder-to-cylinder balancing, fast cycle-to-cycle response, and minimization of pumping losses. The algorithm uses conventional sensor measurements of intake manifold pressure and mass air flow to the intake manifold, and intake valve duration measurement. Closed-loop simulation results are shown for a four-cylinder engine. [S0022-0434(00)03001-X]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call