Abstract

Anaplasmosis an arthropod-born disease of cattle caused by the rickettsia Anaplasma marginale and is an impediment to efficient production of healthy livestock in both Israel and the United States. Currently the only effective vaccines are derived from the blood of infected cattle. The risk of widespread transmission of both known and newly emergent pathogens has prevented licensure of live blood-based vaccines in the U.S. and is a major concern for their continued use in Israel. Consequently development of a safe, effective vaccine is a high priority. In this collaborative project we focused on two approaches to vaccine development. The first focused o n improving antigen delivery to livestock and specifically examined how DNA vaccines could be improved to enhance priming and expansion of the immune response. This research resulted in development and testing of two novel vaccine delivery systems--one that targeted antigen spread among dendritic cells (the key cell in priming immune responses and a follow-on construct that also specifically targeted antigen to the endosomal-lysosomal compartment the processing organelle within the dendritic cell that directs vaccine antigen to the MHC class ll-CD4* T cell priming pathway). The optimized construct targeting vaccine antigen to the dendritic cell MHC class II pathway was tested for ability to prime A. marginale specific immune responses in outbred cattle. The results demonstrated both statistically significant effects of priming with a single immunization, continued expansion of the primary immune response including development of high affinity lgG antibodies and rapid recall of the memory response following antigen challenge. This portion of the study represented a significant advance in vaccine delivery for livestock. Importantly the impact of these studies is not limited to A. marginale a s the targeting motifs are optimized for cattle and can be adapted to other cattle vaccinations by inserting a relevant pathogen-specific antigen. The second approach (which represented an addition to the project for which approval was requested as part of the first annual report) was a comparative approach between A . marginale and the Israel A . centrale vaccines train. This addition was requested as studies on Major Surface Protein( MSP)- 2 have shown that this antigen is highly antigenically variable and presented solely as a "static vaccine" antigen does not give cross-strain immunity. In contrast A. . centrale is an effective vaccine which Kimron Veterinary institute has used in the field in Israel for over 50 years. Taking advantage of this expertise, a broad comparison of wild type A. marginale and vaccine strain was initiated. These studies revealed three primary findings: i) use of the vaccine is associated with superinfection, but absence of clinical disease upon superinfection with A. marginale; ii) the A. centrale vaccine strain is not only less virulent but transmission in competent in Dermacentor spp. ticks; and iii) some but not all MSPs are conserved in basic orthologous structure but there are significant polymorphisms among the strains. These studies clearly indicated that there are statistically significant differences in biology (virulence and transmission) and provide a clear path for mapping of biology with the genomes. Based on these findings, we initiated complete genome sequencing of the Israel vaccine strain (although not currently funded by BARD) and plant to proceed with a comparative genomics approach using already sequenced wild-type A. marginale. These findings and ongoing collaborative research tie together filed vaccine experience with new genomic data, providing a new approach to vaccine development against a complex pathogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call