Abstract
Continued challenge for higher-performance semiconductor device requires the controlled doping of single-dopant atom to control the electrical properties. Here we report the fabrication of semiconductors with both dopant number and position controlled by using a one-by-one doping technique, which we call "single-ion implantation" (SII). This technique enables us to implant dopant ions one-by-one into a fine semiconductor region until the necessary number is reached. Electrical measurements reveal that the threshold voltage (V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> ) fluctuation for the ordered dopant arrays is less than for conventional random doping. We also find that the device with ordered dopant array exhibits two times the lower average value (-0.4 V) of V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> shift than the random dopant distribution (-0.2 V). We conclude that the observed lower value originates from the uniformity of electrostatic potential in the channel region due to the ordered distribution of dopant atoms. The ordered dopant arrays may increase the prospects of fluctuation-controlled advanced silicon transistors
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Control theory & applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.