Abstract

AbstractKnee osteoarthritis (OA) has been reported to affect the performance of ambulation, including unobstructed and obstructed gait. An increased risk of falling in patients with knee OA during obstaclecrossing, as opposed to unobstructed level walking, may be explained by the difference in the control of the body's center of mass (COM) with respect to the center of pressure (COP) while trying to ensure sufficient foot clearance. The purpose of the study was to investigate the dynamic stability in patients with knee OA during level walking and obstacle-crossing. The COM-COP inclination angles and angular velocities, as well as temporal-spatial variables, from eleven patients with bilateral knee OA and eleven normal controls were obtained during level walking and obstacle-crossing using a three-dimensional motion analysis system and forceplates. Demands in the control of the COM relative to the COP were found to be greater during obstacle-crossing in both subject groups. While less stable COM control was found around the end stage of double stance phase during obstacle-crossing when compared to level walking, patients with knee OA successfully acquired strategies in the sagittal plane to maintain close-tonormal stable COM control with normal toe clearances during both level walking and obstacle-crossing. They achieved stable transitions from single limb stance (SLS) to double limb stance (DLS) through a reduced anterior inclination angle and from DLS to SLS through increased anterior angular velocity. It is suggested that assessment of the ability to control dynamic stability in patients with knee OA should consider both the positions and velocities of the COM and COP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call