Abstract

The blood-brain barrier (BBB) is a type of capillary network characterized by a highly selective barrier, which restricts the transport of substances between the blood and nervous system. Numerous in vitro models of the BBB have been developed for drug testing, but a BBB model with controllable capillary structures remains a major challenge. In this study, we report for the first time a unique method of controlling the blood capillary networks and characteristic holes formation in a BBB model by varying the elastic modulus of a three-dimensional scaffold. The characteristic hole structures are formed by the migration of endothelial cells from the model surface to the interior, which have functions of connecting the model interior to the external environment. The hole depth increased, as the elastic modulus of the fibrin gel scaffold increased, and the internal capillary network length increased with decreasing elastic modulus. Besides, internal astrocytes and pericytes were also found to be important for inducing hole formation from the model surface. Furthermore, RNA sequencing indicated up-regulated genes related to matrix metalloproteinases and angiogenesis, suggesting a relationship between enzymatic degradation of the scaffolds and hole formation. The findings of this study introduce a new method of fabricating complex BBB models for drug assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.