Abstract

Control of blade flutter by use of a nonrigid wall may have several advantages compared with the existing method of suppressing blade flutter; but it indeed leads to numerous theoretical problems which have never been clearly elucidated by the existing theories. In the present investigation a new lifting surface model has been suggested based on the application of generalized Green's function theory and double Fourier transformation technique, which is expressed as various upwash integral equations and the corresponding kernel function. In particular, it is found that the change of wall boundary condition not only affects the eigenvalues of the system but also the eigenfunction normalizing factor in comparison with a rigid boundary condition, and it is these variations that finally affect the flow and acoustic field. In addition, the numerical results show that whether a nonrigid wall has positive or negative effect on suppressing blade flutter will mainly depend on what admittance value the wall possesses. It is clear that this conclusion has two implications. One is that there is indeed some possibility for designing a liner for suppressing blade flutter. The second is that modern jet engines using a nonrigid wall or liner to suppress the noise can introduce a detrimental effect on blade flutter stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.