Abstract

AbstractThis paper introduces biped robot adaptation to human living environment from viewpoints of battery operation time extension and environmental recognition. These issues are important when robots actually work at home. First, in order to extend battery operation time, we propose energy‐saving bipedal locomotion gait. The problem is formulated as an optimal control problem, which is conventionally hard to solve when a target system is complicated. In this paper, partial derivatives appeared in optimal control problem are implicitly represented by using automatic differentiation technique. This approach enables complicated optimal control problem solvable. In combination with receding horizon control, its computation cost is also reduced. Second, we introduce the biped walk tracking based on the camera image mounted on the walking robot, and the visual servoing by the posture change for the purpose of the target image tracking in the camera frame. We propose a new control law to track the rotated target object using the characteristic of the walking, which considered the interference between translational motion and rotational motion. The decoupling is realized by simulations and experiments. As a result, the walking robot tracked the translated and rotated target object without a practical issue. Copyright © 2009 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.