Abstract

The paper presents simulation study on control of temperature field of steel billet during continuous casting. The cooling of steel billet is controlled with secondary cooling zone - a set of water jets divided into independent subzones. The temperature field evolution in time and space is described by non-linear partial differential equation. The solution of this equation is obtained numerically, using specialized finite element software ProCAST. Lumped-input and distributed-parameter-output system (LDS) is introduced, with the inputs being cooling water flow rates and the temperature field being the system's distributed output. Control synthesis in the system's feedback is solved in space and time direction. To represent the temperature field during setpoint changes a co-simulation interface was added to the DPS Blockset (Third-Party software product of The MathWorks). The interface block enables you to couple a finite element simulation in ProCAST and control scheme in Simulink. This feature brings you the full power of Simulink to extend the capabilities of finite element simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call