Abstract

The strongest mechanism for adsorption of antigens to aluminum adjuvants is ligand exchange, which involves the replacement of a surface hydroxyl on the adjuvant by a terminal phosphate group of the antigen. A novel phosphonate linker was developed that allows the addition of phosphonate (C-PO3) groups to proteins under controlled and chemically mild conditions. Increasing the number of linkers per protein molecule progressively increased the adsorption strength to aluminum hydroxide adjuvant (AH) as measured by elution in serum. The effect of phosphonate conjugation on the antibody response was determined with hen egg lysozyme (HEL), a protein that has the same charge as AH at neutral pH and does not adsorb to AH. The phosphonylated form of HEL (HEL-P) adsorbed to AH, indicating that the ligand exchange interaction could overcome the electrostatic repulsion. Mice injected with HEL-P/AH had a higher antibody titer to HEL than mice injected with HEL/AH, especially at lower antigen doses, suggesting that adsorption of antigen has a dose-sparing effect. Conjugation of CRM197, an antigen that adsorbs electrostatically to AH, with phosphonate linkers did not enhance the antibody response, indicating that adsorption by either electrostatic or ligand exchange to AH is sufficient to enhance the antibody response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call