Abstract
This paper presents a method for controlling an omnidirectional vehicle with multiple modular steerable drive wheels. Each wheel module has two independent drive wheels and a two-degree-of-freedom (2DOF) attachment consisting of an active prismatic joint and a free rotary joint. The attachment enables the wheel module under nonholonomic constraint to move the chassis better omnidirectionally. A controller consisting of vehicle-level and wheel-module controllers is designed to coordinate wheel modules to ensure correct vehicle movement. The vehicle-level controller determines the desired acceleration of the vehicle chassis to track its reference path, and each wheel-module controller controls its own actuator movement to generate the desired acceleration. If the prismatic joint on the wheel module approaches its mechanical limit, the vehicle-level controller corrects the acceleration to keep the joint position within the workspace. Simulation of a vehicle with four wheel modules confirmed the effectiveness of the proposed control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.