Abstract

We investigate the oscillating dynamics in a ring of network of nonlocally delay-coupled fractional-order Stuart-Landau oscillators. It is concluded that with the increasing of coupling range, the structures of death islands go from richness to simplistic, nevertheless, the area of amplitude death (AD) state is expanded along coupling delay and coupling strength directions. The increased coupling range can prompt the coupled systems with low frequency to occur AD. When system size varies, the area of death islands changes periodically, and the linear function relationship between periodic length and coupling range can be deduced. Thus, one can modulate the oscillating dynamics by adjusting the relationship between coupling range and system size. Furthermore, the results of numerical simulations are consistent with theoretical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call