Abstract

Control of stochastic systems is a challenging open problem in statistical physics, with a wealth of potential applications from biology to granulates. Unlike most cases investigated so far, we aim here at controlling a genuinely out-of-equilibrium system, the two dimensional active Brownian particles model in a harmonic potential, a paradigm for the study of self-propelled bacteria. We search for protocols for the driving parameters (stiffness of the potential and activity of the particles) bringing the system from an initial passivelike steady state to a final activelike one, within a chosen time interval. The exact analytical results found for this prototypical model of self-propelled particles brings control techniques to a wider class of out-of-equilibrium systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call