Abstract

This paper presents the control of a rescue robot driven by the worm-wheel gear transmission. In the modeling process, the load-dependent friction of the worm-wheel gear is considered, and the governing equations for static and dynamic analyses are formulated. Especially we examine the dependency of break-in joint torques on the loading torque and directionality of motion. The friction parameters of the worm-wheel gear of a physical rescue robot are identified through experimental investigation. A friction compensation controller is then designed based on the modeling results and experimental operating conditions. And the designed controller is applied to a dual-arm rescue robot to validate its effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call