Abstract

A successful strategy for growth and improvement has been seen in the Self-Balancing Robot (SB). SB works on the Inverted Pendulum (IP) principle. primary challenge of the control and design of the SB system is to consider the fact that disturbance rejection and the disturbance in the SB stability with respect to the surface are functions of vehicle position change over time (acceleration). In this paper, the nonlinear dynamical system using the Proportional-Integral-Derivative (PID), Linear-Quadratic-Regulator (LQR) and PID & LQR is discussed, and the stability of the system is analyzed. A new control design approach where two controllers LQR-PID are combined to provide strong stability to the nonlinear system. The results obtained are presented and analysed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.