Abstract

This paper presents a new method for realizing the control system of a legged rover for planetary exploration. The controller is realized using a class of dynamical recurrent artificial neural networks called CTRNN, and evolutionary algorithms. The proposed approach allows realizing the design of the controller in a modular way, decomposing the global problem into a collection of low-level tasks to be reached. The embodied dynamical neural network realized has been tested on a virtual legged hexapod called N.E.Me.Sys. The neural-controller has a high degree of robustness facing sensors noises and errors, tolerates a certain amount of degradation, but above all it allows the robot performing complex reactive behaviors, as overcoming hills and narrow valleys

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.