Abstract

These notes are intended to be a tutorial material revisiting in an almost self-contained way, some control results for the Korteweg-de Vries (KdV) equation posed on a bounded interval. We address the topics of boundary controllability and internal stabilization for this nonlinear control system. Concerning controllability, homogeneous Dirichlet boundary conditions are considered and a control is put on the Neumann boundary condition at the right end-point of the interval. We show the existence of some critical domains for which the linear KdV equation is not controllable. In despite of that, we prove that in these cases the nonlinearity gives the exact controllability. Regarding stabilization, we study the problem where all the boundary conditions are homogeneous. We add an internal damping mechanism in order to force the solutions of the KdV equation to decay exponentially to the origin in $L^2$-norm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.