Abstract
In this article, a partial differential equation model for a flexible inverted pendulum system is derived by using the Hamilton principle. Specifically, problems of stabilization and the optimization of such a system are considered. In addition, the singular perturbation method has been used to divide the partial differential equation model for a fast and a slow subsystem. For a fast subsystem stabilization, the control algorithm proposed a boundary force applied at the free end of the beam which proved that the closed-loop subsystem is appropriate and exponentially stable. To stabilize the slow subsystem, a sliding mode control method was used to design the controller, while the method of linear matrix inequality was used in designing the sliding surface. In conclusion, it was shown that the slow subsystem is exponentially stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.